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Naturally reductive homogeneous spaces

Traditional approach: (M, g) a Riemannian mnfld, M = G/H s. t. G is a
group of isometries acting transitively and effectively

Dfn. M = G/H is naturally reductive if h admits a reductive complement
m in g s. t.

〈[X,Y ]m, Z〉+ 〈Y, [X,Z]m〉 = 0 for all X,Y,Z ∈ m, (∗)

where 〈−,−〉 denotes the inner product on m induced from g.

The PFB G → G/H induces a metric connection ∇ with torsion

T (X,Y,Z) := g(∇XY −∇YX − [X,Y ], Z) = −〈[X,Y ]m, Z〉,

the so-called canonical connection. It always satisfies ∇T = ∇R = 0.

Observations:

• If G/H is symmetric, then [m,m] ⊂ h, hence T = 0 and
∇ = Levi-Civita connection ∇g

• condition (∗) ⇔ T is a 3-form, i. e. T ∈ Λ3(M).
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Conversely:

Thm. A Riemannian manifold equipped with a [regular] homogeneous
structure, i. e. a metric connection ∇ with torsion T and curvature R such
that ∇R = 0 and ∇T = 0, is locally isometric to a homogeneous space.
[Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection ∇ with skew
torsion (T is 3-form) such that ∇T = ∇R = 0

generalisation of Riemannian symm. spaces (class. by Cartan)

However, a classification in all dimensions is impossible!

Main pb: 6 ∃ invariant theory for Λ3(Rn) under SO(n) for n ≥ 6

• Use the recent progress on metric connections with [parallel] skew torsion

• Use torsion (instead of curvature) as basic geometric quantity, find a
G-structure inducing the nat. red. structure

In this talk: General strategy, some general results, classification for n ≤ 6

(Not in this talk: applications of the classification)
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Set-up: (M, g) Riemannian mnfd, ∇ metric conn., ∇g Levi-Civita conn.

T (X,Y,Z) = g(∇XY −∇YX − [X,Y ], Z) ∈ Λ3(Mn)

∇XY = ∇g
XY + 1

2T (X,Y,−)

(M,g, T ) carries nat. red. homog. structure if ∇R = 0 and ∇T = 0

Obviously:
nat.red.homog.

Riemannian mnfds
⊂

(homogeneous) Riemannian

mnfds with parallel skew torsion

N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.

S2n+1 = SO(2n+ 2)/SO(2n+ 1) = SU(n+ 1)/SU(n),

S6 = G2/SU(3), S7 = Spin(7)/G2, S15 = Spin(9)/Spin(7).

But: If (M, g) is not loc. isometric to a sphere or a Lie group, then its admits
at most one naturally reductive homogeneous structure.[Olmos-Reggiani, 2012]
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Review of some classical results

• all isotropy irreducible homogeneous manifolds are naturally reductive

• the ±-connections on any Lie group with a biinvariant metric are naturally
reductive (and, by the way, flat) [Cartan-Schouten, 1926]

• construction / classification (under some assumptions) of left-invariant
naturally reductive metrics on compact Lie groups [D’Atri-Ziller, 1979]

• All 6-dim. homog. nearly Kähler mnfds (w. r. t. their canonical almost
Hermitian structure) are naturally reductive. These are precisely: S3 × S3,
CP3, the flag manifold F (1, 2) = U(3)/U(1)3, and S6 = G2/SU(3).

• Known classifications:

- dimension 3 [Tricerri-Vanhecke, 1983], dimension 4 [Kowalski-Vanhecke, 1983],
dimension 5 [Kowalski-Vanhecke, 1985]

These proceed by finding normal forms for the curvature operator, more
details to follow later.
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An important tool: the 4-form σT

Dfn. For any T ∈ Λ3(M), define (e1, . . . , en a local ONF)

σT :=
1

2

n∑

i=1

(ei T ) ∧ (ei T ) (= 0 if n ≤ 4)

[Exa: For T = α e123 + β e456, σT = 0; for T = (e12 + e34)e5, σT = −e1234]

• σT measures the ‘degeneracy’ of T and, if non degenerate, induces
the geometric structure on M

• σT appears in many important relations:

* 1st Bianchi identity:
X,Y,Z

S R(X,Y,Z, V ) = σT (X,Y,Z, V )

* T 2 = −2σT + ‖T‖2 in the Clifford algebra

* If ∇T = 0: dT = 2σT and ∇gT = 1
2σT
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σT and the Nomizu construction

Idea: for M = G/H, reconstruct g from h, T , R and V ∼= TxM

Set-up: h a real Lie algebra, V a real f. d. h-module with h-invariant
pos. def. scalar product 〈, 〉, i. e. h ⊂ so(V ) ∼= Λ2V

R : Λ2V → h an h-equivariant map, T ∈ (Λ3V )h an h-invariant 3-form,

Define a Lie algebra structure on g := h⊕ V by (A,B ∈ h,X, Y ∈ V ):

[A+X,B + Y ] := ([A,B]h −R(X,Y )) + (AY −BX − T (X,Y ))

Jacobi identity for g ⇔

•
X,Y,Z

S R(X,Y,Z, V ) = σT (X,Y, Z, V ) (1st Bianchi condition)

•
X,Y,Z

S R(T (X,Y ), Z) = 0 (2nd Bianchi condition)
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Observation: If (M,g, T ) satisfies ∇T = 0, then R : Λ2(M) → Λ2(M) is
symmetric (as in the Riemannian case).

Consider C(V ) := C(V,−〈, 〉): Clifford algebra, (recall: T 2 = −2σT + ‖T‖2)

Thm. If R : Λ2V → h ⊂ Λ2V is symmetric, the first Bianchi condition is
equivalent to T 2+R ∈ R ⊂ C(V ) (⇔ 2σT = R ⊂ C(V )) , and the second
Bianchi condition holds automatically.

Exists in the literature in various formulations: based on an algebraic identity (Kostant);

crucial step in a formula of Parthasarathy type for the square of the Dirac operator (A,

’03); previously used by Schoemann 2007 and Fr. 2007, but without a clear statement nor

a proof.

Practical relevance: allows to evaluate the 1st Bianchi identity in one
condition!
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Splitting theorems

Dfn. For T 3-form, define [introduced in AFr, 2004]

• kernel: kerT = {X ∈ TM |X T = 0}

• Lie algebra generated by its image: gT := Lie〈X T |X ∈ V 〉

gT is not related in any obvious way to the isotropy algebra of T !

Thm 1. Let (M,g, T ) be a c. s. c. Riemannian mfld with parallel skew
torsion T . Then kerT and (kerT )⊥ are∇-parallel and ∇g-parallel integrable
distributions, M is a Riemannian product s. t.

(M, g, T ) = (M1, g1, T1 = 0)× (M2, g2, T2), kerT2 = {0}

Thm 2. Let (M,g, T ) be a c. s. c. Riemannian mfld with parallel skew
torsion T s. t. σT = 0, TM = T1 ⊕ . . . ⊕ Tq the decomposition of TM in
gT -irreducible, ∇-par. distributions. Then all Ti are ∇

g-par. and integrable,
M is a Riemannian product, and the torsion T splits accordingly

(M, g, T ) = (M1, g1, T1)× . . .× (Mq, gq, Tq)
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A structure theorem for vanishing σT

Thm. Let (Mn, g) be an irreducible, c. s. c. Riemannian mnfld with
parallel skew torsion T 6= 0 s. t. σT = 0, n ≥ 5. Then Mn is a
simple compact Lie group with biinvariant metric or its dual noncompact
symmetric space.

Key ideas: σT = 0 ⇒ Nomizu construction yields Lie algebra structure on TM

use gT ; use a Skew Holonomy Theorem by Olmos-Reggiani (2012), based on A-Fr (2004),

to show that GT is simple and acts on TM by its adjoint rep.

prove that gT = iso(T ) = holg, hence acts irreducibly on TM , hence M is an irred.

symmetric space by Berger’s Thm

Exa. Fix T ∈ Λ3(Rn) with constant coefficients s. t. σT = 0. Then the flat
space (Rn, g, T ) is a reducible Riemannian mnfld with parallel skew torsion
and σT = 0 → assumption ‘M irreducible’ is crucial! (the Riemannian
manifold is decomposable, but the torsion is not)
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Classification of nat. red. spaces in n = 3

[Tricerri-Vanhecke, 1983]

Then σT = 0, and the Nomizu construction can be applied directly to obtain
in a few lines:

Thm. Let (M3, g, T 6= 0) be a 3-dim. c. s. c. Riemannian mnfld with a
naturally reductive structure. Then (M3, g) is one of the following:

• R3, S3 or H3;

• isometric to one of the following Lie groups with a suitable left-invariant
metric:

SU(2), S̃L(2,R), or the 3-dim. Heisenberg group H3

N.B. A general classification of mnfds with par. skew torsion is meaninless
– any 3-dim. volume form of a metric connection is parallel.
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Proof: T = λ e123; M is either Einstein (→ space form) or hol∇ is one-dim.,
i. e. hol∇ = R · Ω and R = αΩ⊙ Ω.

By the Nomizu construction, e1, e2, e3, and Ω are a basis of g with
commutator relations

[e1, e2] = −αΩ− λe3 =: Ω̃, [e1, e3] = λe2, [e2, e3] = −λe1,

[Ω, e1] = e2, [Ω, e2] = −e1, [Ω, e3] = 0.

The 3-dimensional subspace h spanned by e1, e2, and Ω̃ is a Lie subalgebra
of g that is transversal to the isotropy algebra k (since λ 6= 0). Consequently,
M3 is a Lie group with a left invariant metric. One checks that h has the
commutator relations

[e1, e2] = Ω̃, [Ω̃, e1] = (λ2 − α)e2, [e2, Ω̃] = (λ2 − α)e1.

For α = λ2, this is the 3-dimensional Heisenberg Lie algebra, otherwise it is
su(2) or sl(2,R) depending on the sign of λ2 − α.



12

Classification of nat. red. spaces in n = 4

Thm. (M4, g, T 6= 0) a c. s. c. Riem. 4-mnfld with parallel skew torsion.
Then

1) V := ∗T is a ∇g-parallel vector field.

2) Hol(∇g) ⊂ SO(3), hence M4 is isometric to a product N3 × R, where
(N3, g) is a 3-manifold with a parallel 3-form T .

• T has normal form T = e123, so dimkerT = 1 and 2) follows at once
from our 1st splitting thm: but the existence of V explains directly &
geometrically the result in a few lines.

• Thm shows that the next result does not rely on the curvature or the
homogeneity

Since a R. product is is nat. red. iff both factors are nar. red., we conclude:

Cor. A 4-dim. naturally reductive Riemannian manifold with T 6= 0 is locally
isometric to a Riemannian product N3 × R, where N3 is a 3-dimensional
naturally reductive Riemannian manifold. [Kowalski-Vanhecke, 1983]



13

Classification of nat. red. spaces in n = 5

Assume (M5, g, T 6= 0) is Riemannian mnfd with parallel skew torsion

• ∃ a local frame s. t (for constants λ, ̺ ∈ R)

T = −(̺e125 + λe345), ∗T = −(̺e34 + λe12), σT = ̺λe1234

• Case A: σT = 0 (⇔ ̺λ = 0): apply 2nd splitting thm, M5 is then loc. a
product N3 ×N2 (if nat. red., N2 has constant Gaussian curvature)

• Case B: σT 6= 0, two subcases:

* Case B.1: λ 6= ̺, Iso(T ) = SO(2)× SO(2)

* Case B.2: λ = ̺, Iso(T ) = U(2)

Recall: Given a G-structure on (M,g), a characteristic connection is a
metric connection with skew torsion preserving the G-structure (if existent,
it’s unique)
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n = 5: The induced contact structure

Case B: σT 6= 0

Dfn. A metric almost contact structure (ϕ, η) on (M2n+1, g) is called

(N : Nijenhuis tensor, F (X,Y ) := g(X,ϕY ))

• quasi-Sasakian if N = 0 and dF = 0

• α-Sasakian if N = 0 and dη = αF (Sasaki: α = 2)

Thm. Let (M5, g, T ) be a Riemannian 5-mnfld with parallel skew torsion
T such that σT 6= 0. Then M is a quasi-Sasakian manifold and ∇ is its
characteristic connection.

The structure is α-Sasakian iff λ = ̺ (case B.2), and it is Sasakian if
λ = ̺ = 2.

Construction: V := ∗σT 6= 0 is a ∇-parallel Killing vector field of constant length

≡ contact direction η = e5 (up to normalisation)

Check: T = η ∧ dη, define F = −(e12 + e34), then prove that this

works.
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n = 5: Classification I

For λ = ̺ (case B.2), no classification for parallel skew torsion is possible
(many non-homogeneous Sasakian mnfds are known). But for

Case B.1: λ 6= ̺

Thm. Let (M5, g, T ) be Riemannian 5-manifold with parallel skew torsion
s. t. T has the normal form

T = −(̺e125 + λe345), ̺λ 6= 0 and ̺ 6= λ.

Then ∇R = 0, i. e. M is locally naturally reductive, and the family of
admissible torsion forms and curvature operators depends on 4 parameters.

[Use Clifford criterion to relate R and σT ]

Now one can apply the Nomizu construction to obtain the classification:
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n = 5: Classification II

Thm. A c. s. c. Riemannian 5-mnfld (M5, g, T ) with parallel skew torsion
T = −(̺e125 + λe345) with ̺λ 6= 0 is isometric to one of the following
naturally reductive homogeneous spaces:

If λ 6= ̺ (B.1):

a) The 5-dimensional Heisenberg group H5 with a two-parameter family of
left-invariant metrics,

b) A manifold of type (G1 × G2)/SO(2) where G1 and G2 are either
SU(2), SL(2,R), or H3, but not both equal to H3 with one parameter
r ∈ Q classifying the embedding of SO(2) and a two-parameter family of
homogeneous metrics.

If λ = ̺ (B.2): One of the spaces above or SU(3)/SU(2) or SU(2, 1)/SU(2)
(the family of metrics depends on two parameters).

[Kowalski-Vanhecke, 1985]
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Example: The (2n+ 1)-dimensional Heisenberg group

H2n+1 =







1 xt z
0 1 y
0 0 1


 ; x, y ∈ Rn, z ∈ R





∼= R2n+1, local coordinates
x1, . . . , xn, y1, . . . , yn, z

• Metric: described by parameters λ = (λ1, . . . , λn), all λi > 0

gλ =
n∑

i=1

1

λi

(dx2
i + dy2i ) +


dz −

n∑

j=1

xjdyj



2

• Contact str.: η = dz −
n∑

i=1

xidyi, F = −
n∑

i=1

1

λi

dxi ∧ dyi

• Characteristic connection ∇: torsion: T = η ∧ dη = −
n∑

i=1

η ∧ dxi ∧ dyi

• Curvature: R =
n∑

i≤j

√
λiλj(dxi ∧ dyi)

2 [read as symm. tensor product of

2-forms]

Now check that ∇T = ∇R = 0.



18

The case n = 6 I

Assume kerT = 0 from beginning. Distinction σT =, 6= 0 is too crude.

∗σT : a 2-form ≡ skew-symm. endomorphism, classify by its rank! (=0,2,4,6
/ Case A, B, C, D)

Geometry: Can ∗σT be interpreted as an almost complex structure?

Recall: Λ3(R6)
SU(3)
= W

(2)
1 ⊕W

(12)
3 ⊕W

(6)
4 :

type of torsion T ∈ Λ3(R6) describes all almost hermitian mnfds with
characteristic connection [Gray-Hervella, 1980; Friedrich-Ivanov, 2003]

Exa. On S3 × S3, there exist 3-forms with the following subcases:

Type W1 ⊕W3 W1 W3 ⊕W4 −−

rk (∗σT ) 6 6 2 0

iso(T ) so(3) su(3) T 2 so(3)× so(3)
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Case A: σT = 0

This covers, for example, torsions of form µ e123 + ν e456. This is basically
all by our 2nd splitting thm:

Thm. A c. s. c. Riemannian 6-mnfld with parallel skew torsion T s. t. σT = 0
and kerT = 0 splits into two 3-dimensional manifolds with parallel skew
torsion,

(M6, g, T ) = (N3
1 , g1, T1)× (N3

2 , g2, T2)

Cor. Any 6-dim. nat. red. homog. space with σT = 0 and kerT = 0 is
locally isometric to a product of two 3-dimensional nat. red. homog. spaces.
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The case n = 6 II

Case B: rk (∗σT ) = 2

A priori, it is not possible to define an almost complex structure.

Thm. Let (M6, g, T ) be a 6-mnfd with parallel skew torsion s. t. kerT =
0, rk (∗σT ) = 2. Then ∇R = 0, i. e.M is nat. red., and there exist constants
a, b, c, α, β ∈ R s. t.

T = α(e12 + e34) ∧ e5 + β(e12 − e34) ∧ e6

R = a(e12 + e34)
2 + c(e12 + e34)⊙ (e12 − e34) + b(e12 − e34)

2

with the relation a+ b = −(α2 + β2).

Now perform Nomizu construction to conclude:

Thm. A c. s. c. Riemannian 6-mnfd with parallel skew torsion T and
rk (∗σT ) = 2 is the product G1 × G2 of two Lie groups equipped with a

family of left invariant metrics. G1 and G2 are either S
3 = SU(2), S̃L(2,R),

or H3.
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The case n = 6 III

Case B: rk (∗σT ) = 4

Thm. For the torsion form of a metric connection with parallel skew torsion
(kerT = 0), the case rk (∗σT ) = 4 cannot occur.

[but: such forms exist if ∇T 6= 0! – these results explain why a classification is possible

without knowing the orbit class. of Λ3(R6) under SO(6)]
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The case n = 6 IV

Case C: rk (∗σT ) = 6

Thm. Such a 6-mnfd with parallel skew torsion admits an almost complex
structure J of Gray-Hervella class W1 ⊕W3.

All three eigenvalues of ∗σT are equal, hence ∗σT is proportional to Ω, the
fundamental form of J . It’s either nearly Kähler (W1), or it is naturally
reductive and hol∇ = so(3).

N.B. If class W1 (M6 nearly Kähler mnfd): the only homogeneous ones are
S6, S3 × S3,CP3, F (1, 2). [Butruille, 2005]

It is not known whether there exist non-homogeneous nearly Kähler mnfds.

Again, we have an explicit formula for torsion and curvature, then perform
the Nomizu construction (. . . and survive).
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The case n = 6 V

Final result of Nomizu construction:

Thm. A c. s. c. Riemannian 6-mnfd with parallel skew torsion T , rk (∗σT ) =
6 and kerT = 0 that is not isometric to a nearly Kähler manifold is one of
the following Lie groups with a suitable family of left-invariant metrics:

• The nilpotent Lie group with Lie algebra R3 × R3 with commutator
[(v1, w1), (v2, w2)] = (0, v1 × v2),

• the direct or the semidirect product of S3 with R3,

• the product S3 × S3,

• the Lie group SL(2,C), viewed as a real mnfld (with a deformed complex str.!)

- prove that manifold is indeed a Lie group,

- identify its abstract Lie algebra by degeneracy / EV of its Killing form,

- find 3-dim. subalgebra defining a 3-dim. quotient and prove that the 6-dim. Lie alg. is

its isometry algebra;

for example, SL(2,C) appears because it’s the isometry group of hyperbolic space H3



24

Homework. Identify the 6-dimensional Lie algebra g := h ⊕ m, h =
span(Ω1,Ω3,Ω5),m := span(e2, e4, e6) defined by (α,α′, β ∈ R)

[Ω1,Ω3] = (α−2β)Ω5, [Ω1,Ω5] = (2β−α)Ω3, [Ω3,Ω5] = (α−2β)Ω1

[Ω1, e4] = [e2,Ω3] = (α− 2β)e6, [Ω1, e6] = [e2,Ω5] = (2β − α)e4,

[Ω3, e6] = [e4,Ω5] = (α− 2β)e2.

[e2, e4] = −βΩ5 − α′e6, [e2, e6] = βΩ3 + α′e4, [e4, e6] = −βΩ1 − α′e2.

and use it to deduce the previous theorem.

Hint: Prove first that g is not semisimple iff α = 2β or 4β(α− 2β) = α′2.
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Example: SL(2,C) viewed as a 6-dimensional real mnfd

• Write sl(2,C) = su(2)⊕ i su(2);
Killing form β(X, Y ) is neg. def. on su(2), pos. def.on i su(2)

• M6 = G/H = SL(2,C)× SU(2)/SU(2) with H = SU(2) embedded diag
(recall that hol∇ = so(3); want that isotropy rep. = holonomy rep.)

• mα red. compl. of h inside g = sl(2,C)⊕su(2) depending on α ∈ R−{1},

h = {(B,B) : B ∈ su(2)}, mα := {(A+αB,B) : A ∈ i su(2), B ∈ su(2)}.

• Riemannian metric:

gλ((A1 + αB1, B1), (A2 + αB2, B2)) := β(A1, A2)−
1
λ2β(B1, B2), λ > 0

• In suitable ONB: almost hermitian str.: Ω := x12+ x34+ x56 with torsion

T = N + dΩ ◦ J =
[
2λ(1− α) + 4

λ(1−α)

]
x135+

2
λ(1−α)[x146+x236+x245].

• Curvature: has to be a map R : Λ2(M6) → hol∇ ⊂ so(6), here: mainly
projection on hol∇ = so(3).

• ∇T = ∇R = 0, i. e. naturally reductive for all α, λ; type W1 ⊕W3 or W3
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The skew torsion holonomy theorem

Dfn. Let 0 6= T ∈ Λ3(V ), gT as before, GT ⊂ SO(n) its Lie group. Hence,
X T ∈ gT ⊂ so(V ) ∼= Λ2(V ) ∀ X ∈ V . Then (GT , V, T ) is called a
skew-torsion holonomy system (STHS). It is said to be

- irreducible if GT acts irreducibly on V ,

- transitive if GT acts transitively on the unit sphere of V ,

- and symmetric if T is GT -invariant.

Recall: The only transitive sphere actions are:

SO(n) on Sn−1 ⊂ Rn, SU(n) on S2n−1 ⊂ Cn, Sp(n) on S4n−1 ⊂ Hn, G2

on S6, Spin(7) on S7, Spin(9) on S15. [Montgomery-Samelson, 1943]

Thm (STHT). Let (GT , V, T ) be an irreducible STHS. If it is transitive,
GT = SO(n). If it is not transitive, it is symmetric, and

• V is a simple Lie algebra of rank ≥ 2 w. r. t. the bracket [X,Y ] = T (X,Y ),
and GT acts on V by its adjoint representation,

• T is unique up to a scalar multiple.
[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013]


