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Naturally reductive homogeneous spaces

Traditional approach: (M, g) a Riemannian mnfld, M = G/H s.t. G is a
group of isometries acting transitively and effectively

Dfn. M = G/H is naturally reductive if h admits a reductive complement
min gs.t.

(X, Y]m, Z) + (Y, | X, Z]m) = 0 forall X|Y,Z € m, ()

where (—, —) denotes the inner product on m induced from g.
The PFB G — G/H induces a metric connection V with torsion

T(X,Y,Z) =g(VxY = VyX — [X,Y],Z2) = (| X,Y]|n, Z),
the so-called canonical connection. It always satisfies V' = VR = 0.

Observations:
e If G/H is symmetric, then [m,m] C b, hence T'= 0 and
V = Levi-Civita connection VY

e condition (¥) & T is a 3-form, i.e. T € A3(M).



Conversely:

Thm. A Riemannian manifold equipped with a [regular] homogeneous
structure, i.e. a metric connection V with torsion 7' and curvature R such
that VR = 0 and VT = 0, is locally isometric to a homogeneous space.
[Ambrose-Singer, 1958, Tricerri 1993]

Hence: Naturally reductive spaces have a metric connection V with skew
torsion (1" is 3-form) such that VI'= VR =0
—» generalisation of Riemannian symm. spaces (class. by Cartan)

However, a classification in all dimensions is impossible!

Main pb: A invariant theory for A%(R™) under SO(n) for n > 6

e Use the recent progress on metric connections with [parallel] skew torsion

e Use torsion (instead of curvature) as basic geometric quantity, find a
(G-structure inducing the nat. red. structure

In this talk: General strategy, some general results, classification for n < 6

(Not in this talk: applications of the classification)



Set-up: (M, g) Riemannian mnfd, ¥V metric conn., V¢ Levi-Civita conn.
T(X,Y,Z) = g(VxY —VyX — [X,Y],Z) € A3(M™)
VxY =V%Y +2T(X,Y, -)

(M, g,T) carries nat. red. homog. structure if VR =0 and VI =0

: nat.red.homog. (homogeneous) Riemannian
Obviously: _ _ C . .
Riemannian mnfds mnfds with parallel skew torsion

N.B. Well-known: Some mnfds carry several nat.red.structures, for exa.
S+l — S0 (2n +2)/SO(2n + 1) = SU(n + 1)/SU(n),
S0 = G5/SU(3), ST = Spin(7)/Gs, S° = Spin(9)/Spin(7).

But: If (M, g) is not loc. isometric to a sphere or a Lie group, then its admits
at most one naturally reductive homogeneous structure.|[Olmos-Reggiani, 2012]



Review of some classical results

e all isotropy irreducible homogeneous manifolds are naturally reductive

e the +-connections on any Lie group with a biinvariant metric are naturally
reductive (and, by the way, flat) [Cartan-Schouten, 1926]

e construction / classification (under some assumptions) of left-invariant
naturally reductive metrics on compact Lie groups [D’Atri-Ziller, 1979]

e All 6-dim. homog. nearly Kahler mnfds (w.r.t. their canonical almost

Hermitian structure) are naturally reductive. These are precisely: S x 5%,
CP?, the flag manifold F(1,2) = U(3)/U(1)3, and S% = G5/SU(3).

e Known classifications:

- dimension 3 [Tricerri-Vanhecke, 1983], dimension 4 [Kowalski-Vanhecke, 1983],
dimension 5 [Kowalski-Vanhecke, 1985]

These proceed by finding normal forms for the curvature operator, more
details to follow later.



An important tool: the 4-form o

Dfn. For any T' € A3(M), define (eq,...,e, a local ONF)

n

1
o = §Z(eiJT) A(e;aT) (=0ifn <4)
1=1
[Eva For T' = « €123 -+ B €456, OT — O; for T' = (612 -+ 634)65, o = —61234]

e o measures the ‘degeneracy’ of 1" and, if non degenerate, induces
the geometric structure on M

e o appears in many important relations:

X,Y,Z
* 1st Bianchi identity: & R(X,Y,Z,V)=0p(X,Y,Z,V)

¥ T? = —207 + ||T||* in the Clifford algebra

¥ If VI =0: dT =207 and V9T = 107



or and the Nomizu construction

Idea: for M = G/H, reconstruct g from h, T, R and V =T, M

Set-up: b a real Lie algebra, V a real f.d. h-module with Bh-invariant
pos. def. scalar product (,), i.e. h C s0(V) = AV

R : A2V — b an bh-equivariant map, 7' € (A3V)" an b-invariant 3-form,
Define a Lie algebra structureon g:=hdV by (A, Be€h, X, Y €V):
A+ X,B+Y]:=([A,B]ly—R(X,Y))+ (AY — BX - T(X,Y))

Jacobi identity for g <

XY, Z
e & RX,Y,Z V) = op(X,Y,Z, V) (1st Bianchi condition)

XY, Z
e & R(TI(X,)Y),Z) =0 (2nd Bianchi condition)



Observation: If (M, g, T) satisfies VI' = 0, then R : A>(M) — A*(M) is
symmetric (as in the Riemannian case).

Consider C(V) := C(V, —{(,)): Clifford algebra, (recall: T% = =207 + ||T||?)

Thm. If R: A%V — § C A%V is symmetric, the first Bianchi condition is

equivalentto 7 + R e R C C(V) (& 207 =R C C(V)), and the second
Bianchi condition holds automatically.

Exists in the literature in various formulations: based on an algebraic identity (Kostant);
crucial step in a formula of Parthasarathy type for the square of the Dirac operator (A,
'03); previously used by Schoemann 2007 and Fr. 2007, but without a clear statement nor

a proof.

Practical relevance: allows to evaluate the 1st Bianchi identity in one
condition!



Splitting theorems

Dfn. For T 3-form, define [introduced in AFr, 2004]

o kernel: kerT = {X e TM | X 2T =0}
e Lie algebra generated by its image: g7 := Lie(X 4T | X € V)
gr is not related in any obvious way to the isotropy algebra of 7!
Thm 1. Let (M,g,T) be a c.s.c. Riemannian mfld with parallel skew

torsion T'. Then ker T and (ker T')* are V-parallel and V9-parallel integrable
distributions, M is a Riemannian product s. t.

(M, g,T) = (Mx1,91, 11 = 0) x (Ma, g2,T2), kerT> = {0}

Thm 2. Let (M,g,T) be a c.s.c. Riemannian mfld with parallel skew
torsion T's.t. o7 =0, TM =T ® ... ® T, the decomposition of T'M in
gr-irreducible, V-par. distributions. Then all 7; are V9-par. and integrable,
M is a Riemannian product, and the torsion T splits accordingly

(MagaT) — (MlaglaTl) X X (Mqvganq)



A structure theorem for vanishing o

Thm. Let (M™,g) be an irreducible, c.s.c. Riemannian mnfld with
parallel skew torsion T # 0 s.t. op = 0, n > 5. Then M™ is a
simple compact Lie group with biinvariant metric or its dual noncompact
symmetric space.

Key ideas: o7 = 0 = Nomizu construction yields Lie algebra structure on T'M

use gr; use a Skew Holonomy Theorem by Olmos-Reggiani (2012), based on A-Fr (2004),
to show that GG1 is simple and acts on T'M by its adjoint rep.

prove that gr = iso(7T") = holY, hence acts irreducibly on T'M, hence M is an irred.
symmetric space by Berger's Thm

Exa. Fix T € A3(R™) with constant coefficients s.t. o7 = 0. Then the flat
space (R™,g,T) is a reducible Riemannian mnfld with parallel skew torsion
and op = 0 — assumption ‘M irreducible’ is crucial!l (the Riemannian
manifold is decomposable, but the torsion is not)



Classification of nat. red. spaces in n = 3

[Tricerri-Vanhecke, 1983]

Then op = 0, and the Nomizu construction can be applied directly to obtain
in a few lines:

Thm. Let (M?,g,T # 0) be a 3-dim. c.s.c. Riemannian mnfld with a
naturally reductive structure. Then (M3, g) is one of the following:

o R3 S% or H?:

e isometric to one of the following Lie groups with a suitable left-invariant
metric:

SU(2), SI(Z,R), or the 3-dim. Heisenberg group H*

N.B. A general classification of mnfds with par. skew torsion is meaninless
— any 3-dim. volume form of a metric connection is parallel.
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Proof: T'= X e123; M is either Einstein (— space form) or f)o[v is one-dim.,
ie.holY = R-QandR = aQo .

By the Nomizu construction, eq,es,e3, and ) are a basis of g with
commutator relations

~

le1,e0] = —af) — deg =: Q,  ler,e3] = Aea, [ea,e3] = —Aeq,

[Qv 61] — €2, [Qa 62] — —€1, [Qa 63] = 0.

The 3-dimensional subspace h spanned by €1, es, and Q is a Lie subalgebra
of g that is transversal to the isotropy algebra ¢ (since A # 0). Consequently,
M3 is a Lie group with a left invariant metric. One checks that h has the
commutator relations

~ ~ ~

le1,e0] =Q, [Qe1] = (A —a)es, [ez, Q] = (A2 — a)ey.

For a = \?, this is the 3-dimensional Heisenberg Lie algebra, otherwise it is
su(2) or s[(2,R) depending on the sign of \? — .

11



Classification of nat. red. spaces in n =4

Thm. (M*%,g,T # 0) a c.s.c. Riem. 4-mnfld with parallel skew torsion.
Then

1) V :=«T is a VI-parallel vector field.

2) Hol(VY) c SO(3), hence M*? is isometric to a product N3 x R, where
(N3, g) is a 3-manifold with a parallel 3-form T

e T has normal form T = ej23, so dimkerT = 1 and 2) follows at once
from our 1st splitting thm: but the existence of V explains directly &
geometrically the result in a few lines.

e Thm shows that the next result does not rely on the curvature or the
homogeneity

Since a R. product is is nat. red. iff both factors are nar.red., we conclude:

Cor. A 4-dim. naturally reductive Riemannian manifold with T" =£ 0 is locally
isometric to a Riemannian product N3 x R, where N3 is a 3-dimensional
naturally reductive Riemannian manifold. [Kowalski-Vanhecke, 1983] ,



Classification of nat.red. spaces in n =5

Assume (M?®, g, T # 0) is Riemannian mnfd with parallel skew torsion

e 7 a local frame s. t (for constants A, p € R)

T = —(Q6125 -+ )\6345), ¥ = —(Q€34 + )\612), orT = Q)‘61234

e Case A: o7 = 0 (& o)\ = 0): apply 2nd splitting thm, M?® is then loc. a
product N2 x N? (if nat. red., N? has constant Gaussian curvature)

e Case B: o # 0, two subcases:
* Case B.1: X\ # p, Iso(T) = SO(2) x SO(2)
* Case B.2: A = p, Iso(T) = U(2)

Recall: Given a G-structure on (M,g), a characteristic connection is a
metric connection with skew torsion preserving the G-structure (if existent,
it's unique)

13



n = 5: The induced contact structure
Case B: o7 # 0

Dfn. A metric almost contact structure (o, n) on (M?"*1 g) is called
(IV: Nijenhuis tensor, F(X,Y) := g(X, ¢Y))

e quasi-Sasakian if N =0 and dF =0
e a-Sasakian if N =0 and dn = oF (Sasaki: a = 2)

Thm. Let (M?,g,T) be a Riemannian 5-mnfld with parallel skew torsion
T such that op # 0. Then M is a quasi-Sasakian manifold and V is its
characteristic connection.

The structure is «-Sasakian iff A = p (case B.2), and it is Sasakian if
A=p0=2.

Construction: V' := xor # 0 is a V-parallel Killing vector field of constant length
= contact direction 7 = e5 (up to normalisation)

Check: T' = n A dn, define FF = —(e12 + e34), then prove that this
works.

14



n = 5: Classification |

For A\ = o (case B.2), no classification for parallel skew torsion is possible
(many non-homogeneous Sasakian mnfds are known). But for

Case B.1: A #p

Thm. Let (M°,g,T) be Riemannian 5-manifold with parallel skew torsion
s.t. 1" has the normal form

T = —(0e125 + Aeass), oA#0and o # A

Then VR = 0, i.e. M is locally naturally reductive, and the family of
admissible torsion forms and curvature operators depends on 4 parameters.

[Use Clifford criterion to relate R and o]

Now one can apply the Nomizu construction to obtain the classification:
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n = 5: Classification Il

Thm. A c.s.c. Riemannian 5-mnfld (M?®, g, T) with parallel skew torsion

T = —(pe125 + Aesqs) with oA # 0 is isometric to one of the following
naturally reductive homogeneous spaces:

If A # o0 (B.1):

a) The 5-dimensional Heisenberg group H?® with a two-parameter family of
left-invariant metrics,

b) A manifold of type (G1 x G3)/SO(2) where G; and G2 are either
SU(2), SL(2,R), or H?, but not both equal to H® with one parameter

r € Q classifying the embedding of SO(2) and a two-parameter family of
homogeneous metrics.

If A = 0 (B.2): One of the spaces above or SU(3)/SU(2) or SU(2,1)/SU(2)
(the family of metrics depends on two parameters).

[Kowalski-Vanhecke, 1985]
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Example: The (2n + 1)-dimensional Heisenberg group

1zt oz
H"H =010 1 yl|:z,yeR* 2R ) =R Jocal coordinates

0O O 1 L1yeeesy Iy Y1y---3Yny 2
e Metric: described by parameters A = (Aq,...,\,), all A; >0

2

mn 1 mn
gx =D (daf +dy}) + |dz = ) wjdy,
i=1"" j=1

n n 1
e Contact str.. n =dz — Z x;dy;, F'= — Z )\—d:cz- A dy;
i=1 i=1 "

mn
e Characteristic connection V: torsion: T'=n A dn = — Z n A dx; N\ dy;
n =1
e Curvature: R = Z VAN (dz; A dyz-)2 [read as symm:. tensor product of

i<j 2-forms]

Now check that V' = VR = 0. 17



The case n =6 |

Assume ker T' = 0 from beginning. Distinction o7 =, # 0 is too crude.

xop: a 2-form = skew-symm. endomorphism, classify by its rank! (=0,2,4,6
/ Case A, B, C, D)

Geometry: Can xop be interpreted as an almost complex structure?

Recall:  A3(R®) 2 ) g w12 g w©).

type of torsion T € A3(R®) describes all almost hermitian mnfds with
characteristic connection [Gray-Hervella, 1980; Friedrich-lvanov, 2003]

Exa. On S2 x S3, there exist 3-forms with the following subcases:
Type Wi Ws | Wi | Wsd Wy ——

Tk (vor) 6 6 > 0
iso(T) s50(3) | su(3) T? 50(3) x 50(3)

18



Case A: 07 =0

This covers, for example, torsions of form pe123 + v e456. This is basically
all by our 2nd splitting thm:

Thm. Ac.s.c. Riemannian 6-mnfld with parallel skew torsion T's.t. o = 0
and kerT' = 0 splits into two 3-dimensional manifolds with parallel skew
torsion,

(M®,g,T) = (N7, g1, T1) x (N3, g2, T3)

Cor. Any 6-dim. nat.red. homog. space with o7 = 0 and kerT = 0 is
locally isometric to a product of two 3-dimensional nat. red. homog. spaces.

19



The case n =6 1l

Case B: rk (xo7) = 2

A priori, it is not possible to define an almost complex structure.

Thm. Let (M® g,T) be a 6-mnfd with parallel skew torsion s.t. ker T =
0, rk (xopr) = 2. Then VR =0, i.e.M is nat. red., and there exist constants
a,b,c,a, B € R s.t.

T = afe12 +es4) Nes + ez — e34) A eg
R = a(e12 + €34)* + c(e12 + €34) © (e12 — €34) + b(e12 — €34)”
with the relation a + b = —(a? + 5?).
Now perform Nomizu construction to conclude:

Thm. A c.s.c. Riemannian 6-mnfd with parallel skew torsion 1’ and
rk (xor) = 2 is the product G X G2 of two Lie groups equipped with a
family of left invariant metrics. G and G are either S® = SU(2), SL(2,R),
or H3. 20



The case n =6 Il
Case B: rk (xop) =4

Thm. For the torsion form of a metric connection with parallel skew torsion
(kerT' = 0), the case rk (xop) = 4 cannot occur.

[but: such forms exist if VT # 0! — these results explain why a classification is possible
without knowing the orbit class. of A®(R®) under SO(6)]
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The case n =6 IV
Case C: rk (xo7) =6

Thm. Such a 6-mnfd with parallel skew torsion admits an almost complex
structure J of Gray-Hervella class W & Wi.

All three eigenvalues of xor are equal, hence xop is proportional to €2, the
fundamental form of J. It's either nearly Kahler (W7), or it is naturally
reductive and hol¥ = s0(3).

N.B. If class W1 (M nearly Kahler mnfd): the only homogeneous ones are
36,33 X SS,CPS,F(LQ). [Butruille, 2005]

It is not known whether there exist non-homogeneous nearly Kahler mnfds.

Again, we have an explicit formula for torsion and curvature, then perform
the Nomizu construction (. . . and survive).
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The case n =6 V

Final result of Nomizu construction:

Thm. A c.s.c. Riemannian 6-mnfd with parallel skew torsion T', rk (xo7) =
6 and kerI' = 0 that is not isometric to a nearly Kahler manifold is one of
the following Lie groups with a suitable family of left-invariant metrics:

e The nilpotent Lie group with Lie algebra R3 x R? with commutator
(v, w1), (v2, w2)] = (0,01 X v2),

e the direct or the semidirect product of S2 with R3,
e the product 52 x S?,
e the Lie group SL(2,C), viewed as a real mnfld (with a deformed complex str.!)

- prove that manifold is indeed a Lie group,

- identify its abstract Lie algebra by degeneracy / EV of its Killing form,

- find 3-dim. subalgebra defining a 3-dim. quotient and prove that the 6-dim. Lie alg. is
its isometry algebra;

for example, SL(2, C) appears because it's the isometry group of hyperbolic space H3

23



Homework. Identify the 6-dimensional Lie algebra g := H S m, h =

span(€2y, Q3,Qs5), m := span(es, ey, eg) defined by (a,a’, 8 € R)

1, eq4] = |ea, Q3] = (o — 208)eq, [Q1,e6] = [e2, Q5] = (28 — a)ey,
3, e6] = leq, Q5] = (o — 20)es.

and use it to deduce the previous theorem.

2

Hint: Prove first that g is not semisimple iff « = 25 or 45(a — 25) = a'".

:Ql,Qg] — ((1—2@)95, [91,95] — (2@—0&)93, [93,95] — ((X—Z@)Q

eo,e4) = —BQ5 — d'es, ez, eq] = B3+ les, [es, 6] = —BQ1 — den.

24



Example: SI.(2,C) viewed as a 6-dimensional real mnfd
e Write sl(2,C) = su(2) @ ¢ su(2);
Killing form B(X,Y) is neg. def. on su(2), pos. def.on isu(2)

e M®=G/H = SL(2,C) x SU(2)/SU(2) with H = SU(2) embedded diag
(recall that holY = s0(3); want that isotropy rep. = holonomy rep.)

e m,, red. compl. of hinside g = s5l(2, C) dsu(2) dependingon v € R—{1},

h = {(B,B) : Besu(2)}, m, := {(A+aB,B) : A€ isu(2), B € su(2)}.
e Riemannian metric:

9A((A1 + aBy, Br), (A2 + aBs, Bp)) := B(A1, Az) — 558(B1, B2), A >0

e In suitable ONB: almost hermitian str.: ) := 212 + x34 + 56 With torsion
T'=N+dloJ = [2>\(1 —a) + ﬁ 2135 +ﬁ[l‘146 + X236 + T245).

e Curvature: has to be a map R : A2(M%) — holY C s0(6), here: mainly
projection on hol¥ = s0(3).

e VI'=VR =0, i.e. naturally reductive for all a, \; type W7 @& W3 or W3 .



The skew torsion holonomy theorem

Dfn. Let 0 £ T € A3(V), gr as before, Gr C SO(n) its Lie group. Hence,
XiT egr Cso(V)ZA(V)V X € V. Then (Gp,V,T) is called a
skew-torsion holonomy system (STHS). It is said to be

- irreducible if G acts irreducibly on V,

- transitive if G acts transitively on the unit sphere of V,

- and symmetric if T is Gp-invariant.

Recall: The only transitive sphere actions are:

SO(n) on S™~1 c R", SU(n) on S?*~1 c C", Sp(n) on S4"~1 C H", G,
on S% Spin(7) on S7, Spin(9) on S*°. [Montgomery-Samelson, 1943]

Thm (STHT). Let (G7,V,T) be an irreducible STHS. If it is transitive,
G = SO(n). If it is not transitive, it is symmetric, and

e V is a simple Lie algebra of rank > 2 w.r. t. the bracket (X, Y] =T(X,Y),
and G acts on V by its adjoint representation,

e T is unique up to a scalar multiple.
[transitive: AFr 2004, general: Olmos-Reggiani, 2012; Nagy 2013]
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